Примеры решения задач с степенью

Выражения, преобразование выражений


В этой статье мы поговорим о преобразовании выражений со степенями. Сначала мы остановимся на преобразованиях, которые выполняются с выражениями любых видов, в том числе и со степенными выражениями, таких как раскрытие скобок, приведение подобных слагаемых. А дальше разберем преобразования, присущие именно выражениям со степенями: работа с основанием и показателем степени, использование свойств степеней и т.д.


Что такое степенные выражения?

Термин «степенные выражения» практически не встречается школьных учебниках математики, но он довольно часто фигурирует в сборниках задач, особенно предназначенных для подготовки к ЕГЭ и ОГЭ, например, [1]. После анализа заданий, в которых требуется выполнить какие-либо действия со степенными выражениями, становится понятно, что под степенными выражениями понимают выражения, содержащие в своих записях степени. Поэтому, для себя можно принять такое определение:

Определение.

Степенные выражения – это выражения, содержащие степени.

Приведем примеры степенных выражений. Причем будем их представлять согласно тому, как происходит развитие взглядов на степень числа от степени с натуральным показателем до степени с действительным показателем.

Как известно, сначала происходит знакомство со степенью числа с натуральным показателем, на этом этапе появляются первые самые простые степенные выражения типа 32, 75+1, (2+1)5, (−0,1)4, , 3·a2−a+a2, x3−1, (a2)3 и т.п.

Дальше вводится нулевая степень числа, и начинают встречаться выражения, содержащие степени с нулевым показателем, например, 50, (a+1)0, 3+52−3,20, …

Чуть позже изучается степень числа с целым показателем, что приводит к появлению степенных выражений с целыми отрицательными степенями, наподобие следующих: 3−2, , a−2+2·b−3+c2.

В старших классах вновь возвращаются к степеням. Там вводится степень с рациональным показателем, что влечет появление соответствующих степенных выражений: , , и т.п. Наконец, рассматриваются степени с иррациональными показателями и содержащие их выражения: , .

Перечисленными степенными выражениями дело не ограничивается: дальше в показатель степени проникает переменная, и возникают, например, такие выражения 2x2+1 или . А после знакомства с логарифмом, начинают встречаться выражения со степенями и логарифмами, к примеру, x2·lgx−5·xlgx.

Итак, мы разобрались с вопросом, что представляют собой степенные выражения. Дальше будем учиться преобразовывать их.

К началу страницы

Основные виды преобразований степенных выражений


Со степенными выражениями можно выполнять любые из основных тождественных преобразований выражений. Например, можно раскрывать скобки, заменять числовые выражения их значениями, приводить подобные слагаемые и т.д. Естественно, при этом стоит надо соблюдать принятый порядок выполнения действий. Приведем примеры.

Пример.

Вычислите значение степенного выражения 23·(42−12).

Решение.

Согласно порядку выполнения действий сначала выполняем действия в скобках. Там, во-первых, заменяем степень 42 ее значением 16 (при необходимости смотрите возведение в степень), и во-вторых, вычисляем разность 16−12=4. Имеем 23·(42−12)=23·(16−12)=23·4.

В полученном выражении заменяем степень 23 ее значением 8, после чего вычисляем произведение 8·4=32. Это и есть искомое значение.

Итак, 23·(42−12)=23·(16−12)=23·4=8·4=32.

Ответ:

23·(42−12)=32.

Пример.

Упростить выражения со степенями 3·a4·b−7−1+2·a4·b−7.

Решение.

Очевидно, что данное выражение содержит подобные слагаемые 3·a4·b−7 и 2·a4·b−7, и мы можем привести их: 3·a4·b−7−1+2·a4·b−7=5·a4·b−7−1.

Ответ:

3·a4·b−7−1+2·a4·b−7=5·a4·b−7−1.

Пример.

Представьте выражение со степенями в виде произведения.

Решение.

Справиться с поставленной задачей позволяет представление числа 9 в виде степени 32 и последующее использование формулы сокращенного умножения разность квадратов:

Ответ:

.

Также существует ряд тождественных преобразований, присущих именно степенным выражениям. Дальше мы их и разберем.

К началу страницы

Работа с основанием и показателем степени

Встречаются степени, в основании и/или показателе которых находятся не просто числа или переменные, а некоторые выражения. В качестве примера приведем записи (2+0,3·7)5−3,7 и (a·(a+1)−a2)2·(x+1).

При работе с подобными выражениями можно как выражение в основании степени, так и выражение в показателе заменить тождественно равным выражением на ОДЗ его переменных. Другими словами, мы можем по известным нам правилам отдельно преобразовывать основание степени, и отдельно – показатель. Понятно, что в результате этого преобразования получится выражение, тождественно равное исходному.

Такие преобразования позволяют упрощать выражения со степенями или достигать других нужных нам целей. Например, в упомянутом выше степенном выражении (2+0,3·7)5−3,7 можно выполнить действия с числами в основании и показателе, что позволит перейти к степени 4,11,3. А после раскрытия скобок и приведения подобных слагаемых в основании степени (a·(a+1)−a2)2·(x+1) мы получим степенное выражение более простого вида a2·(x+1).

К началу страницы

Использование свойств степеней

Один из главных инструментов преобразования выражений со степенями – это равенства, отражающие свойства степеней. Напомним основные из них. Для любых положительных чисел a и b и произвольных действительных чисел r и s справедливы следующие свойства степеней:

  • ar·as=ar+s;
  • ar:as=ar−s;
  • (a·b)r=ar·br;
  • (a:b)r=ar:br;
  • (ar)s=ar·s.

Заметим, что при натуральных, целых, а также положительных показателях степени ограничения на числа a и b могут быть не столь строгими. Например, для натуральных чисел m и n равенство am·an=am+n верно не только для положительных a, но и для отрицательных, и для a=0.

В школе основное внимание при преобразовании степенных выражений сосредоточено именно на умении выбрать подходящее свойство и правильно его применить. При этом основания степеней обычно положительные, что позволяет использовать свойства степеней без ограничений. Это же касается и преобразования выражений, содержащих в основаниях степеней переменные – область допустимых значений переменных обычно такова, что на ней основания принимают лишь положительные значения, что позволяет свободно использовать свойства степеней. Вообще, нужно постоянно задаваться вопросом, а можно ли в данном случае применять какое-либо свойство степеней, ведь неаккуратное использование свойств может приводить к сужению ОДЗ и другим неприятностям. Детально и на примерах эти моменты разобраны в статье преобразование выражений с использованием свойств степеней. Здесь же мы ограничимся рассмотрением нескольких простых примеров.

Пример.

Представьте выражение a2,5·(a2)−3:a−5,5 в виде степени с основанием a.

Решение.

Сначала второй множитель (a2)−3 преобразуем по свойству возведения степени в степень: (a2)−3=a2·(−3)=a−6. Исходное степенное выражение при этом примет вид a2,5·a−6:a−5,5. Очевидно, остается воспользоваться свойствами умножения и деления степеней с одинаковым основанием, имеем
a2,5·a−6:a−5,5=
a2,5−6:a−5,5=a−3,5:a−5,5=
a−3,5−(−5,5)=a2.

Ответ:

a2,5·(a2)−3:a−5,5=a2.

Свойства степеней при преобразовании степенных выражений используются как слева направо, так и справа налево.

Пример.

Найти значение степенного выражения .

Решение.

Равенство (a·b)r=ar·br, примененное справа налево, позволяет от исходного выражения перейти к произведению вида и дальше . А при умножении степеней с одинаковыми основаниями показатели складываются: .

Можно было выполнять преобразование исходного выражения и иначе:

Ответ:

.

Пример.

Дано степенное выражение a1,5−a0,5−6, введите новую переменную t=a0,5.

Решение.

Степень a1,5 можно представить как a0,5·3 и дальше на базе свойства степени в степени (ar)s=ar·s, примененного справа налево, преобразовать ее к виду (a0,5)3. Таким образом, a1,5−a0,5−6=(a0,5)3−a0,5−6. Теперь легко ввести новую переменную t=a0,5, получаем t3−t−6.

Ответ:

t3−t−6.

К началу страницы

Преобразование дробей, содержащих степени

Степенные выражения могут содержать дроби со степенями или представлять собой такие дроби. К таким дробям в полной мере применимы любые из основных преобразований дробей, которые присущи дробям любого вида. То есть, дроби, которые содержат степени, можно сокращать, приводить к новому знаменателю, работать отдельно с их числителем и отдельно со знаменателем и т.д. Для иллюстрации сказанных слов рассмотрим решения нескольких примеров.

Пример.

Упростить степенное выражение .

Решение.

Данное степенное выражение представляет собой дробь. Поработаем с ее числителем и знаменателем. В числителе раскроем скобки и упростим полученное после этого выражение, используя свойства степеней, а в знаменателе приведем подобные слагаемые:

И еще изменим знак знаменателя, поместив минус перед дробью: .

Ответ:

.

Приведение содержащих степени дробей к новому знаменателю проводится аналогично приведению к новому знаменателю рациональных дробей. При этом также находится дополнительный множитель и выполняется умножение на него числителя и знаменателя дроби. Выполняя это действие, стоит помнить, что приведение к новому знаменателю может приводить к сужению ОДЗ. Чтобы этого не происходило, нужно, чтобы дополнительный множитель не обращался в нуль ни при каких значениях переменных из ОДЗ переменных для исходного выражения.

Пример.

Приведите дроби к новому знаменателю: а) к знаменателю a, б) к знаменателю .

Решение.

а) В этом случае довольно просто сообразить, какой дополнительный множитель помогает достичь нужного результата. Это множитель a0,3, так как a0,7·a0,3=a0,7+0,3=a. Заметим, что на области допустимых значений переменной a (это есть множество всех положительных действительных чисел) степень a0,3 не обращается в нуль, поэтому, мы имеем право выполнить умножение числителя и знаменателя заданной дроби на этот дополнительный множитель:

б) Присмотревшись повнимательнее к знаменателю, можно обнаружить, что

и умножение этого выражения на даст сумму кубов и , то есть, . А это и есть новый знаменатель, к которому нам нужно привести исходную дробь.

Так мы нашли дополнительный множитель . На области допустимых значений переменных x и y выражение не обращается в нуль, поэтому, мы можем умножить на него числитель и знаменатель дроби:

Ответ:

а) , б) .

В сокращении дробей, содержащих степени, также нет ничего нового: числитель и знаменатель представляются в виде некоторого количества множителей, и сокращаются одинаковые множители числителя и знаменателя.

Пример.

Сократите дробь: а) , б) .

Решение.

а) Во-первых, числитель и знаменатель можно сократить на наибольший общий делитель (НОД) чисел 30 и 45, который равен 15. Также, очевидно, можно выполнить сокращение на x0,5+1 и на . Вот что мы имеем:

б) В этом случае одинаковых множителей в числителе и знаменателе сразу не видно. Чтобы получить их, придется выполнить предварительные преобразования. В данном случае они заключаются в разложении знаменателя на множители по формуле разности квадратов:

Ответ:

а)

б) .

Приведение дробей к новому знаменателю и сокращение дробей в основном используется для выполнения действий с дробями. Действия выполняются по известным правилам. При сложении (вычитании) дробей, они приводятся к общему знаменателю, после чего складываются (вычитаются) числители, а знаменатель остается прежним. В результате получается дробь, числитель которой есть произведение числителей, а знаменатель – произведение знаменателей. Деление на дробь есть умножение на дробь, обратную ей.

Пример.

Выполните действия .

Решение.

Сначала выполняем вычитание дробей, находящихся в скобках. Для этого приводим их к общему знаменателю, который есть , после чего вычитаем числители:

Теперь умножаем дроби:

Очевидно, возможно сокращение на степень x1/2, после которого имеем .

Еще можно упростить степенное выражение в знаменателе, воспользовавшись формулой разность квадратов: .

Ответ:

Пример.

Упростите степенное выражение .

Решение.

Очевидно, данную дробь можно сократить на (x2,7+1)2, это дает дробь . Понятно, что надо еще что-то сделать со степенями икса. Для этого преобразуем полученную дробь в произведение . Это дает нам возможность воспользоваться свойством деления степеней с одинаковыми основаниями: . И в заключение процесса переходим от последнего произведения к дроби .

Ответ:

.

И еще добавим, что можно и во многих случаях желательно множители с отрицательными показателями степени переносить из числителя в знаменатель или из знаменателя в числитель, изменяя знак показателя. Такие преобразования часто упрощают дальнейшие действия. Например, степенное выражение можно заменить на .

К началу страницы

Преобразование выражений с корнями и степенями

Часто в выражениях, в которыми требуется провести некоторые преобразования, вместе со степенями с дробными показателями присутствуют и корни. Чтобы преобразовать подобное выражение к нужному виду, в большинстве случаев достаточно перейти только к корням или только к степеням. Но поскольку работать со степенями удобнее, обычно переходят от корней к степеням. Однако, осуществлять такой переход целесообразно тогда, когда ОДЗ переменных для исходного выражения позволяет заменить корни степенями без необходимости обращаться к модулю или разбивать ОДЗ на несколько промежутков (это мы подробно разобрали в статье переход от корней к степеням и обратно).

Пример.

Представьте выражение в виде степени.

Решение.

Область допустимых значений переменной x определяется двумя неравенствами x≥0 и , которые задают множество [0, +∞). На этом множестве мы имеем право перейти от корней к степеням: . Остается лишь упростить полученное степенное выражение, обратившись к свойствам степеней:

Ответ:

.

К началу страницы

Преобразование степеней с переменными в показателе

После знакомства со степенью с рациональным показателем вводится степень с иррациональным показателем, что позволяет говорить и о степени с произвольным действительным показателем. На этом этапе в школе начинает изучаться показательная функция, которая аналитически задается степенью, в основании которой находится число, а в показателе – переменная. Так мы сталкиваемся со степенными выражениями, содержащими числа в основании степени, а в показателе - выражения с переменными, и естественно возникает необходимость выполнения преобразований таких выражений.

Следует сказать, что преобразование выражений указанного вида обычно приходится выполнять при решении показательных уравнений и показательных неравенств, и эти преобразования довольно просты. В подавляющем числе случаев они базируются на свойствах степени и нацелены по большей части на то, чтобы в дальнейшем ввести новую переменную. Продемонстрировать их нам позволит уравнение 52·x+1−3·5x·7x−14·72·x−1=0.

Во-первых, степени, в показателях которых находится сумма некоторой переменной (или выражения с переменными) и числа, заменяются произведениями. Это относится к первому и последнему слагаемым выражения из левой части:
52·x·51−3·5x·7x−14·72·x·7−1=0,
5·52·x−3·5x·7x−2·72·x=0.

Дальше выполняется деление обеих частей равенства на выражение 72·x, которое на ОДЗ переменной x для исходного уравнения принимает только положительные значения (это стандартный прием решения уравнений такого вида, речь сейчас не о нем, так что сосредоточьте внимание на последующих преобразованиях выражений со степенями):

Теперь сокращаются дроби со степенями, что дает .

Наконец, отношение степеней с одинаковыми показателями заменяется степенями отношений, что приводит к уравнению , которое равносильно . Проделанные преобразования позволяют ввести новую переменную , что сводит решение исходного показательного уравнения к решению квадратного уравнения 5·t2−3·t−2=0.

Как видите, преобразование степенных выражений с переменными в показателях степеней проводятся по принципам, разобранным в предыдущих пунктах.

К началу страницы

Преобразование выражений со степенями и логарифмами

Введение в обиход логарифма приводит к появлению выражений, содержащих в своей записи степени и логарифмы. Для наглядности приведем несколько таких выражений: , . Для их преобразования могут применяться все выше разобранные подходы. Но здесь еще непременно понадобятся свойства логарифмов. Преобразованием подобных выражений мы займемся в статье преобразование логарифмических выражений.


Некогда разбираться?

Список литературы.

  1. И. В. Бойков, Л. Д. Романова Сборник задач для подготовки к ЕГЭ. Ч. 1. Пенза 2003.

Профиль автора статьи в Google+

К началу страницы


Источник: http://www.cleverstudents.ru/expressions/transformations_of_expressions_with_powers.html



Преобразование степенных выражений (выражений со степенями) Гдз spotlight 9 класс переводы

Примеры решения задач с степенью Примеры решения задач с степенью Примеры решения задач с степенью Примеры решения задач с степенью Примеры решения задач с степенью Примеры решения задач с степенью